
Automated generation of digital twin in virtual reality for
interaction with specific nature ecosystem

Arnis Cirulis1[0000-0001-9577-0646], Lauris Taube1, Zintis Erics1

1Vidzeme University of Applied Sciences, Faculty of Engineering, Valmiera, Latvia
arnis.cirulis@va.lv
lauris.taube@va.lv
zintis.erics@va.lv

Abstract. This paper analyses the most suitable technological approaches to de-
sign a workflow and develop a virtual reality system - BogSim-VR, to run real
time simulations for bog ecosystems (ecological systems) or peatlands in differ-
ent countries and regions. Currently few technologies reflect data in an under-
standable way. There is also no suitable system that allows for different human
actions and the visualization of consequences. Virtual reality technologies can
address this problem. The BogSim-VR system is adaptable to any bog ecosystem
thus creating a digital twin for experimenting with various interactions in a rep-
licated environment.

Keywords: virtual reality, digital twin, 3D content generation, bog ecosystem,
onsite simulation

1 Introduction

An already developed simulation model was the basis for the design and development
of a digital bog ecosystem twin in virtual reality. Various implementations of system
dynamics justify this technology [1-3]. The logic for a bog ecosystem simulation model
was available in Stella Architect and Insight Maker [4-6], and is implemented in Python
using calculations based on 35 criteria. The main outcome of this simulation model is
generated charts, which depict the level of ground water for a specified period. This
simulation model is verified and validated; it includes all components forming the hy-
drological system of the bog and mathematically reflects the relationships between
them [4-6]. The hydrological system as an emphasis on depicting the bog ecosystem
was chosen because the exact level of groundwater ensures the growth of sphagnum
moss as a function of carbon storage while preventing rapid growth of forest stands,
which would interfere with precipitation supplementing the water balance of the eco-
system [4-6]. Bog ecosystems have an important role in carbon sequestration and mit-
igation of global climate change. Bogs in the boreal and sub-arctic regions store around
15–30% of global soil carbon [7]. In the European Union, the move towards climate
neutrality policy includes activities specifically aimed at the reduction of negative
greenhouse gas emissions from bogs through nature conservation and renewal [8].

mailto:arnis.cirulis@va.lv

Bogs are one of the most endangered types of natural habitats in Europe [9] and it was
important to develop the BogSim-VR system to highlight the actuality and role of bogs.
This system is adaptable to any bog ecosystem thus creating a digital twin for experi-
menting with various interactions in a replicated environment. In a bog such interac-
tions include cutting down trees, tree planting, digging ditches, traces of tractor equip-
ment, fire damage etc. The BogSim-VR digital twin was developed in the Unity engine.
A three-dimensional world is generated based on GIS (geographic information system)
data gathered for a specific area. For a more precise three-dimensional representation
LIDAR data from a drone was also used. Python simulation logic is realized in C# and
currently most influence in calculations is assigned to leaf area index (LAI) values,
which change depending on actions carried out in the digital twin, for example, the LAI
value decreases if trees are cut down, however the ground water level increases in future
predictions. The virtual environment is accessed via an Oculus Quest2 headset. Navi-
gation uses best practices to reduce cyber sickness, and is customizable. The participant
can utilize various virtual tools, instruments, devices or machinery, for example, a vir-
tual tablet to customize interaction settings for convenient UX (user experience) and to
instantly depict simulation results. By choosing a virtual chainsaw, the participant can
pretend to be a forest worker and cut down trees, changing the LAI value for the area.
For LAI and groundwater calculations, it is crucial to have precise data about a specific
date, for example, the amount of snow and rain, temperature, sun radiation, humidity,
peat depth and many other (35 variables in total). Currently data is acquired from me-
teorological services for the closest station in the area, but to increase accuracy of cal-
culations, an IoT network is developed directly in the bog to gather essential parameters
all year. For that purpose, narrowband Internet of Things (NB-IoT) technology is used.
This allows implementing a low-power solution.
The developed virtual environment could be also used for decision makers of sensitive
ecosystems or to provide a training course in environmental sciences. Since BogSim-
VR system is adaptable to various bogs, it can also be customized to ecological systems,
mostly land systems, like forests, grasslands and deserts. The designed flowchart and
practical implementation will be used to develop similar systems, and to improve ac-
curacy for currently developed virtual reality simulation systems.

2 Algorithms and methods to develop a digital twin and
implement a simulation

The BogSim-VR system uses compute shaders from the Unity game engine [10]. The
package also supplies data structures and API for programmatic access and execution.
Additionally, there is I/O functionality support for reading/writing simulation data
from/to CSV/TIFF files. Note that all of this is done in a manner that should facilitate
reuse and extension of included components. Main features and working principles of
the package include core data structures and general working principles, I/O options
and formats, bog simulation specific functionality and reuse. Generally, compute
shaders are programs that run on the graphics card, outside of the normal rendering
pipeline. They can be used for massively parallel GPGPU (General-purpose Computing

on Graphics Processing Units) algorithms, or to accelerate parts of game rendering. To
use them efficiently often an in-depth knowledge of GPU architectures and parallel
algorithms is needed [10]. Various approaches are used to implement this technology
in simulations, terrain visualizations, image processing [11,12] and use its benefits, es-
pecially in applications that acquire real time pipelines. There are several techniques to
accelerate physics simulations [13]. Compute shaders provide support for computing
various mathematical operations needed as part of the usual graphics-generating pipe-
line. They can also act as powerful mathematical co-processors for applications outside
of the graphics pipeline [14]. General data structures used for the BogSim-VR shader
include Simulation class, Frame class and Layer class. Simulation class provides the
necessary API to execute simulation, move data from/to CPU/GPU and acts as a list of
Frame class instances. In the middle, instances of the Frame class represent states of
the simulation at every time step. This class organizes and provides mapping of Layer
class instances to Layer types. At the bottom, instances of the Layer class hold the ac-
tual data of the simulation. This class provides both generic and low-level access to the
data. Layer types help to identify the data held within Layer class instances as variables
corresponding to the current simulation.
On the CPU side, the aforementioned classes are directly represented in C#. The Sim-
ulation class has various methods for Frame instance manipulation, compute shader
execution and data transfer, it also implements IList and IDisposable interfaces for easy
data access and resource management respectively. The Frame class implements the
IDictionary interface for the Layer class instance and type mapping. The Layer class
holds data in a byte array and provides both direct untyped access and generic unman-
aged indexers in both 1D and 2D forms. Layer types are implemented and accepted as
a generic enum (see fig.1.).
On the GPU side all data is stored in two memory buffers and various additional pa-
rameters are used. The input buffer holds all data from layers the simulation reads and
does not write. The input parameters hold input layer dimensions. The output buffer
holds data from the layers the simulation writes. This is also where the intermediate
states of stocks reside. The output parameters hold output layer dimensions and 1D size
for convenience as there is very little available in ways of data structuring, and exten-
sive use of abstraction and indirection may hinder the performance, especially consid-
ering any points of synchronization during parallel execution.
The use of the developed shader package is straightforward. First, create an instance of
Simulation class and add loaded Frame instances. Second, execute the simulation using
the Simulate method. This method transfers input layers of the current frame to the
GPU and dispatches the simulation shader, optionally calling the initialization shader
beforehand. Both shaders are provided to the Simulation instance during its creation.
Use the LoadLastFrame method to fetch the resulting output layers from the GPU, if
necessary. Repeat the last two steps in a loop until there are no more input frames. Write
the resulting frames to CSV/TIFF files.

Fig.1. Simulation and class representation on CPU.

Depending on simulation and layer resolution, each frame may take up considerable
memory. In this case it is anywhere from 138 to 202 MB depending on input layer
resolution. While this may be acceptable for a few frames, it will reach unreasonable
memory requirements for a 1000 frame simulation; therefore, two options should be
considered. Providing a filter argument to the Simulation class during creation. This
will enable LoadLastFrame to fetch only the layers present in the filter, and not call
LoadLastFrame for every frame simulated. The SetData method used by the Simulation
class to transfer data to the GPU seems to cause a memory leak if used multiple times
within a single Update call, therefore refrain from simulating too many frames per sin-
gle Update call (see fig. 2). The I/O facilities use a simple framework to move data in
both directions. Sinks write the data to a location. Sources read the data from a location.
Sinks/Sources have a limited capability to guess which specific implementation to use
based on the data location identified by Uri. The simplest and least efficient supported
format is CSV. Here Sinks/Sources come in three variations. As the name implies the
Single variant reads/writes data from/to a single CSV file. This is also the default vari-
ant guessed when the framework is presented with a Uri pointing to a CSV file. The
Grouped variant reads/writes a new CSV file for each frame of data. This variant ex-
pects a Uri pointing to a directory; therefore, it can't be guessed from Uri alone. Since
the data needs to be split among multiple files, each file is named with the frame num-
ber. The Source expects data to be in this is format. The Distinct variant reads/writes a
new CSV file for each layer within each frame. As with the Grouped variant, it expects
a directory and cannot be guessed.

Fig.2. Fragment of general topology for the developed shader.

Again, the data is split among multiple files; therefore, each file is named and expected
with the frame number and Layer type name. TIFF is the most efficient format in terms
of file size and processing time. As with CSV, the Sinks/Sources come in three varia-
tions. The Single variant works with a single TIFF file and can be guessed from Uri.
The Grouped variant splits data among files based on the frame and layer dimensions.
This effectively places each potentially multi-spectral image in its own file because
several TIFF viewers can handle multi-spectral images but cannot deal with multi-im-
age TIFF files. The Distinct variant splits the data amongst files based on the frame and
layer. This effectively places each channel in its own grayscale image. This is the most
flexible format. Each file can hold multiple images and each image can have an arbi-
trary number of channels with an arbitrary sample width and format. As a result, this is
the most efficient format but can cause some headache for viewers not prepared to han-
dle its internal structure. This is most obvious when working with multi-image files,
since most general-purpose image viewers cannot go past the first image. This format
can also store georeferenced data, potentially with proper support for the time dimen-
sion. While the Sources have no problem reading such files, Sinks do not forward this
information when writing as the data may come from any Source including some not
storing such information.
Shader is not a traditional Source and certainly not a Sink of any kind. Instead, this
Source uses an algorithm to generate data from a shader. Two algorithm variations are
available: Perlin noise and Simplex noise. Both can be guessed and configured from
Uri. The Scheme indicates which Source to use. The Host indicates whether to generate
data in 'input', 'output' or 'all' layers. The Port indicates the divider to use to downscale
the generated layer's resolution. This source is used to generate arbitrary data during
development in cases where the real data is not available.

In addition to general use and data structures, there are some algorithms of note specif-
ically for bog simulation. The terraform algorithm (see fig. 3) uses data from an arbi-
trary layer to change and scale a height map of the Terrain. The algorithm employs
some simple checks to ensure the layer dimensions are divisible by the implied resolu-
tion. The shortest side of the layer is the resolution baseline from which the next lowest
base of two is calculated. As a result, the layer used should have the longest side be a
multiple of the shortest one and the shortest side should be a multiple of two. The algo-
rithm can handle non-square layers larger than the height map but those used by Unity
are square exclusively. This is compensated by scaling the terrain and should not be a
problem unless extremely elongated strips of data are used, in which case an obvious
visual directionality may form depending on the height map data variation. The height
maps in Unity are of an odd size, power of 2 plus 1; therefore, the algorithm uses ex-
trapolation to calculate the potential values of this semi-border. This is done purely for
aesthetic reasons and has no impact on the simulation. It must be noted that there seem
to be limits to the size range a height map in Unity can take, at least from the editor UI.
Currently the algorithm does not account for this and some problems have been ob-
served when using height maps below minimal resolution. The potential implications
of this are unclear, but caution is advised when working outside the editor's range.

Fig.3. Terraform algorithm to change and scale the height map of Terrain.

Plant algorithm (see fig.4.) uses the data from an arbitrary layer to place various Plants.
The placement of Plants is determined by their Species. These Species have several
parameters directing the algorithm:

• The radius indicates the area the members of the Species affect.
• The falloff indicates how quickly, if at all, the effect of the Species wanes

with distance.
• The value range indicates the limits of where the Species can spawn.

• The intensity range indicates the limits of the Species’ effect on the sur-
roundings; this is scaled from the value.

• The height range indicates the limits of the Species’ physical size; this is
scaled from the intensity.

• The type indicates the type of Plant the Species should spawn.

Fig.4. Plant algorithm to generate various species on Terrain.

The algorithm operates as follows; it starts at the layer origin and then moves in a row-
major order along the second interpretation of the data. At each stop, it checks if any
known Species can be spawned there. If a compatible Species is found, a Plant is
spawned and the following surrounding area is affected. The algorithm is used to cal-
culate potential tree positions based on the LAI (Leaf area index) layer. There is a pair
of derived equations used for calculating the opposite effect on Near infrared and Red
reflectance layers through the NDVI (normalized difference vegetation index) layer [5].
These change both reflectance layers when virtually planting or chopping trees. The
algorithm is not based on scientific theory. It was deemed good enough at generating a
canopy visually matching the distribution of the real one (see fig. 5), and the derived
equations, while mathematically sound and able to maintain correct NDVI, may go into
negatives in the resulting Near infrared and Red reflectance. This is mitigated by only
using them in the calculation of NDVI. Still, care is advised when using the resulting
reflectance values. This algorithm is rather linear and is executed on the CPU side. This
is in contrast to the Terraform algorithm, which runs mostly on the GPU side.

Fig.5. Source code and implementation of Plant algorithm.

Since most of the code involved is abstract and generic, the reuse of this project is
straightforward. Provide a different compute shader realizing the desired simulation.
When providing a different Layer type enumeration matching the shader, the following
needs to be considered. The enum should clearly label input and output types with 'In-
put' and 'Output' prefixes respectively; this determines buffer sizes. The inputs should
come before the outputs; this is required since the code uses enum values as offsets in
the buffers. The enum should clearly label stocks that require intermediate states with
'Stock' suffix, this is used to allocate extra memory in the output buffer. Optionally, a
different value type for data interpretation should be provided.

3 Visualization of simulation data and interaction feedback
delivery

To achieve the main goal a virtual reality (VR) scene should be developed for visualiz-
ing simulation data. This is done by creating a 3D environment with realistic terrain

where the user can move around, and trees to interact with. The terrain and trees are
generated based on real-world data.
The user can see various types of data from the simulation in easy-to-understand ways
– images and charts. The user can also interact with the trees – cut them down and see
how that action has affected the simulation in real-time.
In the visualization stage the Unity project uses the Universal Render Pipeline (URP)
for its graphical performance optimizations. Some custom shaders were needed for this
project. For this purpose, the visual shader package ‘Amplify Shader Editor’ was used
[15]. For VR integration ‘BNG VR Interaction Framework’ [16] provides movement
and object and UI interactions for the user. Oculus headsets were used for development
and testing, and in Unity the Oculus SDK was necessary. ‘BNG Framework’ provides
integrations for other major VR SDKs (such as SteamVR), so other brand headsets can
be used. The main logic is split into multiple scripts that perform their own specific
tasks.
Simulation controller is one of the main scripts. It follows the singleton pattern and is
easily accessible from any other script.
It loads data from a specific TIFF file and uses that to perform the simulation. After
the simulation, its data is stored in a variable. Later this variable and its data is used in
multiple other scripts. The stored simulation data includes positional data which corre-
sponds to a position on the 3D terrain. To acquire and display various data based on
position, this script also contains a method to get and return data based on that position
for a specified data type.
The vegetation placer script performs the creation and placement of vegetation objects
on the 3D terrain. The user can set and adjust some settings for this script in the Unity
Editor. Terrain – specify which Terrain object to use. Position Offset – specify how
much random positional offset to add to each tree. Vegetation Radius Multiplier – a
value that adjusts how dense the forest can be (the higher the value, the less dense it is).
Vegetation – a list of vegetation objects and their parameters (height, type and prefab
to spawn).
For Terrain Tree Prototypes the project uses the built-in Unity terrain and tree systems.
Therefore, creating and placing tree objects is not as straightforward as simply instan-
tiating object prefabs. Before a tree object can be placed on the terrain, a specific
‘TreePrototype’ class object must be created. It has multiple properties, but for this use
case only the ‘prefab’ property is changed. For each entry in the ‘Vegetation’ list, a tree
prototype is created with the specified prefab. After that the created tree prototypes are
set in terrain settings. That allows prefabs to be spawned on the terrain.
The simulation contains real terrain height data from which the 3D terrain is created.
Terrain creation is done in this script, but potentially could be implemented in any other.
This is done before creating and placing the tree objects. To create the terrain, the ‘Ter-
raform()’ method is used from ‘Simulation’. The terrain is created in the size specified
in the Simulation (for example, if the Simulation is set to X = 1000 and Y = 500, then
the terrain will be 1000x500 units in size on X and Z axis in Unity).
Placing the tree objects occurs as follows. Before instantiating the trees, specific ‘Plant’
class objects must be retrieved from the simulation. For this purpose, a ‘Dictionary’ is
created based on values specified in the ‘Vegetation’ list. This is passed as a parameter

to the ‘Simulation.Plant()’ which returns a list of ‘Plant’ class objects. The ‘Plant’ ob-
ject contains information about the tree’s height and position, among other parameters.
Then for each of the ‘Plant’ objects a ‘Tree instance’ is created and placed on the ter-
rain. A ‘Tree instance’ is Unity Terrain specific data and contains various parameters
about the placed tree object. This data includes a prototype index to correspond to the
necessary ‘TreePrototype’ entry created earlier, position according to the simulation
data, random rotation on the vertical axis and random height based on specified height
range in the ‘Vegetation’ list. Then the ‘Tree instance’ gets added to the terrain (see fig.
6). Two more tasks are performed while creating the instances: ‘Destroyable trees’ and
‘Overlay controller’.

Fig.6. Generated tree on terrain.

Development of Destroyable trees (see fig.7). Unity terrain trees are not interactive by
default. To be able to cut down trees, an extra object is created in the scene for each
tree. When creating previously mentioned ‘TreeInstance’s, a method is called from the
‘DestroyableTreeGenerator’ script. It creates a capsule game object with a collider at
the position of the tree and attaches a ‘DestroyableTree’ script component to it. The
script component holds references and data of the terrain tree. The ‘DestroyableTree’
script allows the tree to be cut down. When the tree is cut down, the script removes the
tree’s terrain instance and, in its place, instantiates an object prefab with the same
graphics, but with an added ‘Rigidbody’ physics component that allows the tree to fall.
When a tree is cut, that event is sent back to the simulation. The simulation gets re-
freshed and outputs new data that represents the changes caused by cutting down a tree.
To achieve Tree cutter specifics, the user must use a specific object to cut down the
tree: a chainsaw. The object has various components attached to it, as well as a control
script for tree cutting.

Fig.7. Destroyable tree object in 3D scene and components.

At the position of the chainsaw blade, there is a box trigger zone, which detects if a tree
object is in it (see fig. 8). If there is and the user has pressed the trigger button on the
controller, the cutting logic executes. Each ‘DestroyableTree’ has ‘life points’, and,
while the cutting logic is being executed, they are being reduced for the tree that is in
the trigger zone. If the ‘life points’ decrease to 0, the tree is cut down. While the cutting
logic is being executed, a particle system and audio is played to indicate activities per-
formed.

Fig.8. Chainsaw object with trigger box on blade part.

4 Discussion on interaction capabilities

A user interface (UI) is needed to display data to the user. In virtual reality a traditional
screen-space UI cannot be used, it needs to be a part of the environment. For this project
a tablet computer object is used, and the data and information are displayed on its
screen. This is done with the Unity UI system set to work in world-space. The user has
the ability to view various data in image form. Those images are displayed on the tablet
object (see fig. 9). They are created and controlled by the ‘OverlayController’ script.
These images and the data represent the 3D world and its form. It is vital for the user
to know where they are in relation to the image. Therefore, a user icon is shown on top
of these images to let the user know where they are. The user icon logic is described in
the chapter “Overlay User Controller”. When starting the application, each described
image texture is created at runtime based on simulation resolution and its aspect ratio.
Then they are assigned to UI references for displaying them to the user. If the image
has data that corresponds to a world-space position on the 3D terrain, that position can-
not be used directly to specify which pixels to affect. This position must be converted
(normalized) to UV coordinates, which are in range of 0-1 on X and Y axis (2D space).
The conversion is simple – the world-space position must be divided by the simulation
resolution. This allows the image to be any resolution to adjust the performance and
detail. This normalized value is essentially used as a positional percentage on the image
– for example, a position of [0.1,0.7] on an 1000x1000 pixel image would be at
[100,700]. Theoretically, if the image was the same resolution as the simulation, it
could be possible to use the integer value of the world-space position directly to specify
which pixel to affect. However, this approach could have a big impact on performance
– larger images take longer to process.
When creating trees, their data is saved and sent to ‘OverlayController’. That data con-
tains tree position and its value. After all trees are generated, an image texture is created
where each of the trees is shown as a colourful dot. The colour is determined from tree
value. The position of this dot corresponds to the positions in 3D world-space.

Fig.9. User interface examples and tablet object.

The resulting image texture is created by going over the list of trees, using their position
to determine where each dot must be. This position is in world-space and must be nor-
malized as described above. Dot colour is determined by using the tree value (which is
in range of 0-1) in a pre-made colour gradient. That colour is then assigned to pixels in
the determined position (see fig. 10). If the user cuts down a tree, the image is updated,
and that trees’ dot is removed (see fig. 10).

Fig.10. Generated tree representation on tree map and changes in tree map after cutting down a

tree.

While simulation data already includes elevation data, we create a separate height map
based on the generated terrain. This is for comparing the simulation data with what is
generated, and its precision.
The height map is created by sampling the height of the terrain in a grid-like pattern.
The sampling step size is adjustable and controls how detailed the resulting image will
be (a lower step size means a more detailed image). Also, it is important to mention
that having a lower step size impacts the speed of image generation and setting it too
low will take a long time. Unity terrain has a scripting method ‘SampleHeight()’ that
returns the height of a position. The returned value is then normalized (to a range of 0-
1) to be used in a colour gradient to determine pixel colour. (See fig. 11).
The simulation has various layers with different data. To view this data in a more com-
prehensible way, it can be converted to images. This process is slightly different from
previous image generation as layer data is in byte array form. To begin generating the
image, simulation layer data needs to be converted to float values to create colour data.
This is done by ‘BitConverter.ToSingle()’. The returned float value is then used to cre-
ate a grayscale colour using it for all three colour channels. This is done for all bytes in
the array, and each created colour is added to a list for later use. Finally, the texture is
created by setting pixel colours with the aforementioned colour list using ‘Tex-
ture2D.SetPixels()’ method.
For some image overlays it is important to know where they are in relation to the user.
For this a user icon was created. It is always on top of the image overlays and follows
the players’ position. The logic for moving the user icon is as follows; get the user
position in the 3D world and normalize it to a range of 0-1 based on simulation resolu-
tion so it can be used on any size overlay image – the normalized value is used as a
positional percentage on the image. Then set the icons’ position to a value that is cal-
culated with this formula “overlay image size * normalized position”.

Fig.11. Generated height map and simulation data in image form.

In addition to image-based data output, simulation data can also be displayed as a chart.
For the chart logic and visuals, a third-party asset was used - ‘XCharts’ [17]. This pro-
ject uses bar charts. Data displayed is based on the users’ position in 3D space and is
updated in real-time as the user moves around. The logic for this is simple – each frame
the game runs, the application checks if the player position has changed, and if it has,
get data for the position from the simulation and send it to the chart to show that value.
The ‘XCharts’ asset provides built-in easy updating of data– by specifying which chart
an entry to update and new data values, the chart gets updated.
For this project various tree 3D models were needed. To make the creation process
easier and simpler, a third-party asset was used to generate the tree models – ‘MTree’
[18]. It provides various useful features that Unity's built-in tree creator does not. Mul-
tiple pine tree models at different stages of growth were created with this tool. Since a
large amount of tree models can cause performance issues when creating forest envi-
ronments, some of the ‘MTree’ optimization features were used. Mainly adjusting the
polygon count to be as low as possible while still maintaining a good overall look of
the trees and using the automatic generation of LOD (Level of detail) objects for the
model. LOD objects are copies of the original object, but with decreasing number of
polygons. The LODs are useful at runtime when trying to maintain a good number of
objects that the user sees while decreasing the performance as little as possible. Essen-
tially, the tree objects that are closer to the user are shown as the higher detailed LOD
objects, but the objects farther away from the user are shown as less detailed. Since it’s
generated at runtime, texturing by hand is not possible. For this reason, a special shader
was created in ‘Amplify’ shader editor. This shader is based on terrain height, where at
different heights a different texture is shown. The user needs to supply four textures to
be used and adjust height settings. These textures must be tile-able and seamless, and
to provide adequate detail, the textures need to be repeated multiple times across the
terrain. By doing this, the repetition of the textures becomes very visible. To circumvent
this, random noise-based colour variation was introduced – by mapping Perlin noise
through a colour gradient, a seemingly random colour texture was created. This texture
was then overlaid over the base textures. This broke up the repeating patterns and re-
sulted in realistic ground texturing.

Conclusions

The BogSim-VR virtual reality system is functional and can be rated as TRL (technol-
ogy readiness level) 3 - 4. The system was designed and developed to support the re-
quirements and features of digital twin technology offering a 3D replica of a real bog
ecosystem located in northern Latvia. The system prototype was tested and verified at
Vidzeme University of Applied Sciences, Virtual Reality Technologies laboratory
(ViA VR-Lab). The BogSim-VR system will be approbated in the next phase by per-
forming statistical analysis and user tests. Prototype functionality improvements are

also planned. Future activities involve actions to decrease the time of digital twin gen-
eration, integration of adjustment settings and improvement of UX (user experience)
for convenient interaction and cybersickness reduction.

Acknowledgements
This work is research project funded by Latvian Council of Science, project number: lzp-

2020/2-0396. Project name: Visualization of real-time bog hydrological regime and simulation
data in virtual reality. Research activities took place at the Faculty of Engineering at Vidzeme
University of Applied Sciences, and specifically, in the Virtual Reality Technologies laboratory
(ViA VR-Lab). The laboratory was established in 2009 in cooperation with the Fraunhofer Insti-
tute Virtual Reality Training and Development Centre (Magdeburg, Germany) and the University
of Agder (Kristiansand, Norway), pointing to its long history and years of experience. The activ-
ities of the ViA VR-Lab include industry training, urban planning, interactive study tools and
equipment in medicine, visualization solutions in logistics, tourism and history, entertaining ed-
ucational environments, marketing and product demonstration.

References

1. Wu, Xiuyu, et al. "Impacts of lean construction on safety systems: a system dynamics ap-
proach." International journal of environmental research and public health 16.2 (2019): 221.

2. Muravev, Dmitri, et al. "The introduction to system dynamics approach to operational effi-
ciency and sustainability of dry port’s main parameters." Sustainability 11.8 (2019): 2413.

3. Alefari, Mudhafar, Angel Maria Fernández Barahona, and Konstantinos Salonitis. "Model-
ling manufacturing employees’ performance based on a system dynamics approach." Proce-
dia CIRP 72 (2018): 438-443.

4. Java, Oskars. "The Specification of Hydrological Model Requirements for Bog Restoration."
Baltic Journal of Modern Computing 8.1 (2020): 164-173.

5. Java, Oskars. "Restoration of a degraded bog hydrological regime using System Dynamics
modeling." CBU International Conference Proceedings. Vol. 6. ISE Research Institute,
2018.

6. Java, O.; Kohv, M.; Lõhmus,A. (2021). Performance of a Bog Hydrological System Dy-
namics Simulation Modeling an Ecological Restoration Context: Soomaa Case Study, Esto-
nia. Water, 13, 2217; https://doi.org/10.3390/w13162217

7. Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N.,
Rydin, H., Schaepman-Strub, G. 2008. Peatlands and the carbon cycle: from local processes
to global implications – a synthesis. Biogeosciences, Vol.5, pp.1475–1491,
https://doi.org/10.5194/bg-5-1475-2008

8. IPBES (The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services) 2019. Kopsavilkums ricibpolitikas veidotajiem, [Summary for policy makers]. 4.
lpp., A.4. (In Latvian)

9. Kiely, G., Leahy, P., McVeigh, P., Laine, A., Lewis, C., Koehler, A.K., Sottocornala, M.
2018. PeatGHG - Survey of GHG Emission and Sink Potential of Blanket Peatlands.
EPA Research, pp.1-35.

10. Compute Shaders. Copyright 2016 Unity Technologies. Publication 5.3-X. Retrieved from
https://docs.unity3d.com/530/Documentation/Manual/ComputeShaders.html

11. Khoury, Jad, Jonathan Dupuy, and Christophe Riccio. "Adaptive GPU Tessellation with
Compute Shaders." (2018).

12. Tornai, Robert, and Péter Fürjes-Benke. "Compute Shader in Image Processing Develop-
ment." (2021).

13. Mihai, Cosmin-Constantin, and Ciprian Lupu. "Using Graphics Processing Units and Com-
pute Shaders in Real Time Multimodel Adaptive Robust Control." Electronics 10.20 (2021):
2462.

14. Vassilev, Tzvetomir. "REVIEW OF SEVERAL TECHNIQUES FOR ACCELERATING
PHYSICAL SIMULATIONS ON THE GPU 3." (2020).

15. Amplify Creations, Amplify Shader Editor. Latest release date Jan 12, 2022. Retrieved from
https://assetstore.unity.com/packages/tools/visual-scripting/amplify-shader-editor-68570

16. Bearded Ninja Games, VR Interaction Framework. Latest release date Oct 14, 2021. Re-
trieved from https://assetstore.unity.com/packages/templates/systems/vr-interaction-frame-
work-161066

17. XCharts 2.0, unity-ugui-XCharts. Latest release date Dec 29, 2021. Retrieved from
https://github.com/monitor1394/unity-ugui-Xcharts

18. Mx, Mtree - Tree Creation. Latest release date Jul 6, 2021, Retrieved from https://as-
setstore.unity.com/packages/tools/modeling/mtree-tree-creation-132433

	1 Introduction
	2 Algorithms and methods to develop a digital twin and implement a simulation
	3 Visualization of simulation data and interaction feedback delivery
	4 Discussion on interaction capabilities
	Conclusions
	References

